
Trends
The turquoise killifish Nothobranchius
furzeri is the shortest-lived vertebrate
that can be kept in captivity. Its aging
shows many of the characteristics of
mammalian aging.

The short lifespan of N. furzeri presents
a unique opportunity to perform long-
itudinal studies in a vertebrate.

The availability of natural strains with
different lifespans, the possibility of
engineering the genome, and its pub-
lished genome have established N. fur-
zeri as a novel model in aging research.

The genome sequence of N. furzeri
provides new insights into the genetic
architecture and evolution of aging, like
clustering of aging-related genes in
specific genomic regions and positive
selection of lifespan determinants.

N. furzeri not only serves as a platform
for rapid exploration of aging and dis-
ease but also allows insights into devel-
opment, like embryonic arrest
(diapause), and early sex chromosome
evolution.
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The short-lived killifish Nothobranchius furzeri inhabits ephemeral ponds in
southeastern Africa and is characterized by rapid growth and early sexual
maturation. With respect to the molecular, cellular, and integrative traits of
aging, N. furzeri shows significant similarities to mammals, including humans.
Recently, reference sequences for the N. furzeri genome have been published.
Also, methods for transgenesis and genomic engineering have been estab-
lished. In this review we discuss why the killifish is a valuable model for aging
research and what we have learned from the genome sequence. The respective
insights are not limited to the biology of aging but are also relevant for devel-
opmental biology and the evolution of sex determination.

Nothobranchius as an Emerging Model System
Nothobranchius furzeri, the turquoise killifish, is the shortest-lived vertebrate that can be kept in
captivity [1]. It is an annual fish that inhabits seasonal freshwater ponds in the southeast of Africa
and is characterized by rapid growth and early sexual maturation [2] (Figure 1, Key Figure). The
short median lifespan of between 3 and 7 months reflects an adaptation to the ephemeral nature
of the habitat. In 2003, when the extremely short lifespan of a particular strain, namely GRZ, was
described it was suggested for the first time to use N. furzeri as a model for aging research [1].
Now, 13 years later, several laboratory strains exist that differ in lifespan [3] and many ‘hallmarks
of aging’ in N. furzeri have been studied and characterized. In addition, transgenesis has been
established [4–6], single genes have been modified using genome editing tools [7], and recently
reference sequences (see Glossary) for the N. furzeri genome have been published [8,9].
Thus, while still a ‘newcomer’ to the field, N. furzeri could join the group of well-established aging
models including yeast, Caenorhabditis elegans, Drosophila, and mouse in the future. In this
review we summarize recent achievements that make N. furzeri a valuable aging model, with an
emphasis on genetics and genomics. For further information on phylogeny, ecology, distribution,
and population structure in the wild, the reader is referred to Cellerino et al. [10].

N. furzeri Aging Resembles Mammalian Aging
The concept of aging, defined as the continuous and irreversible physiological decline affecting
most organisms, has recently been deconstructed into nine categories that have been named
‘hallmarks of aging’ [11]. These comprise telomere attrition, mitochondrial dysfunction, cellular
senescence, loss of proteostasis, epigenetic alterations, altered intercellular communication,
stem cell exhaustion, genomic instability, and deregulated nutrient sensing. In the past years
many of these hallmarks have been shown to be relevant for aging in N. furzeri. Telomere
shortening has been shown to accompany aging in muscle and skin. In this case, tissue samples
from 5- and 21-week-old animals were compared [12]. Importantly, at 5–7 kb the length of
killifish telomeres resembles that of human telomeres (5–10 kb [13]) more closely than that of
mouse telomeres (50–150 kb [14]). Mitochondrial dysfunction occurs during N. furzeri aging.
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Key Figure

Life Cycle of Nothobranchius furzeri and Selected Key Questions Addressed by Current Research
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Figure 1. Center: With the start of the rainy season, N. furzeri larvae hatch and develop rapidly. After 4–5 weeks juveniles reach sexual maturity and begin laying eggs.
Depending on environmental conditions (i.e., the availability of water), a fraction of the embryos complete development and hatch in the same season. Most of the
embryos, however, will enter diapause at any of the three stages indicated (dispersed phase, somite stage, hatching stage). The arrest in diapause can last for more than 1
year, until the next rainy season begins. Source: FLI/© Alexander Schmidt, Atelier Symbiota.
While there was no evidence for age-related deletions of mitochondrial DNA (mtDNA), as
typically observed in mammals [15], a decline in mtDNA copy number, downregulation of
mtDNA-associated genes, and impairment of mitochondrial function could be observed [16].
Cellular senescence as well as an increase in aging markers has been observed in old compared
with young N. furzeri. This is true for senescence-associated b-galactosidase and lipofuscin as
well as the cell cycle inhibitors p21 and p16 [17,18].

Although direct studies on loss of proteostasis remain lacking for N. furzeri, the aging-associated
upregulation of translation and ribosomal processes as well as the increased expression of
genes encoding lysosomal proteins [8,19,20] can be regarded as indicators of this hallmark of
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Glossary
Clustered regularly interspaced
short palindromic repeats
(CRISPR)/CRISPR-associated 9
(Cas9): this system is found in many
bacteria and archaea and is used to
modify the genome of many
organisms ranging from plants to
humans.
Convergent evolution: independent
evolution of the same/similar features
in species of different lineages.
Diapause: phase of developmental
arrest or dormancy. A mechanism to
survive phases of unfavorable
environmental conditions; in the case
of Nothobranchius furzeri, a state to
survive dryness.
Genome reference sequence:
major result of a genome sequencing
effort. It does not necessarily
represent the entire genome. Where
the genomic sequence is resolved, it
shows one allele, not necessarily the
major allele of a species/population.
Normally, and depending on the
number, ploidy, and heterogeneity of
the sequenced individual genomes, it
represents an artificial/chimeric
haplotype.
Male-specific region of the Y
chromosome (MSY): the region of
the male-specific chromosome that
differentiates the sexes genetically in
an organism with an XY sex-
determining system, rendering males
the heterogametic sex.
Positional gene-enrichment (PGE)
analysis: statistical test of whether
an observed accumulation of genes/
loci with specific features (e.g.,
functional annotation ‘aging related’)
in a chromosomal region is likely to
occur by chance.
Positive selection (directional
selection): mode of natural selection
in which an (not necessarily newly
evolved) advantageous allele
increases its frequency and eventually
might become fixed in the species as
the consequence of differences in
survival and reproduction among
different phenotypes.
Quantitative trait locus (QTL):
chromosomal region where allele
ratios correlate with variation in a
quantitative phenotype (e.g.,
lifespan).
Restriction-site-associated DNA
(RAD) linkage map: genetic linkage
map based on small nucleotide
variations in the vicinity of restriction
endonuclease recognition sites,
determined by high-throughput
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Figure 2. Hallmarks of Aging in Nothobranchius furzeri. Phenotypic changes on aging of N. furzeri. Individual male fish
from a strain with a maximum lifespan of 1 year have been recorded at the indicated time points. Typical signs of aging
comprise weight loss, spinal curvature, discoloration, and craniofacial malformation. Reproduced, with permission, from
Heiß, W. Altermedizin aktuell, 21. Erg. Lfg. 10/2011 © ecomed-Storck, Landsberg/Lech, Germany.
aging in the fish. The same is true for epigenetic alterations, as demonstrated by increased
expression of genes encoding members of the polycomb complex and upregulation of
H3K27me3 with age [19]. The upregulation of genes encoding components of various signaling
pathways including cytokine–cytokine receptor interaction and Jak–Stat signaling [20] suggests
that altered intercellular communication occurs on aging in N. furzeri.

Integrative aging-associated markers and phenotypes have also been observed in N. furzeri.
Phenotypic changes include reduced coloration in males, malformations of the spine and face,
and weight loss (Figure 2). Significant differences between old and young animals have also been
seen in locomotor activity, open-field exploration, and learning and memory function [17,21,22].
In association with these studies, age-dependent decay in adult neurogenesis was described for
N. furzeri [23]. This indicates aging-associated exhaustion of neuronal stem cells, which is
another important hallmark of aging. Along these lines, regenerative capacity reduction has
recently been shown in the N. furzeri caudal fin [24]. Over past decades, fish have emerged as
ideal models to study the regeneration of various organs, including the fin, heart, kidney, and
brain [25–28]. Given the short lifespan of N. furzeri the demonstration that regenerative capacity
is significantly influenced by age makes killifish a strong candidate to study the aging-associated
decline in regenerative capacity, a phenomenon that is central for mammalian aging, including in
humans.

Finally, N. furzeri also shows a high incidence of age-dependent neoplasias in liver and kidney
[29]. Given the killifish's short lifespan this is rather surprising and makes N. furzeri a potential
model for studying genes and pathways underlying age-dependent tumorigenesis. Thus, there
are indications that the aging of N. furzeri encompasses many hallmarks that have been
postulated to contribute to the aging process. Therefore, N. furzeri resembles a true and
valuable model for aging research.

Genomic Engineering in N. furzeri
An animal model in biomedicine is viable when it is amenable to genomic manipulation. In the
case of N. furzeri, three groups independently established transgenesis, each using a Tol2
transposon-based fluorescence reporter driven by a ubiquitous or inducible promoter [4–6].
Founder fish harbored multiple integration sites of the respective transgenes, which were
transmitted through the germline and have given rise to stable transgenic lines.

Additionally, clustered regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated 9 (Cas9) technology has been established in N. furzeri [7]. In this report,
13 genes related to aging were mutated. For example, various deletions were introduced into the
telomerase reverse transcriptase (tert) gene. In humans, mutations in the telomerase genes lead
to syndromes such as dyskeratosis congenita, aplastic anemia, and idiopathic pulmonary
fibrosis [30–32]. These syndromes are characterized by telomere shortening and defects in
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sequencing (RAD-seq). Presence/
absence of a restriction site can also
be regarded as a RAD marker.
Scaffolding: an approach to
assembling regions of contiguously
resolved genomic sequences (contigs)
into larger units (scaffolds) when the
order and orientation of the contigs
are known by other means (e.g.,
large-insert clone end sequences,
optical mapping). The sequence gaps
between the contigs are usually filled
with Ns, resembling the distance of
the contigs if this is known.
Synteny: colocalization of genes/loci
on the same chromosome regardless
of their order, orientation, and
distance.
tissue homeostasis. In N. furzeri, male homozygous tert mutants showed a dramatic reduction in
fertility accompanied by testicular atrophy and germ cell loss. In addition, first-generation
homozygous fish displayed defects in other highly proliferative tissues including blood and
intestine. These phenotypic abnormalities became significantly worse in the second generation,
most probably due to further shortening of telomeres. This is different from the situation in mice,
where phenotypic alterations in telomerase knockout animals become apparent only after three
generations [33]. Thus, with regard to phenotypic alterations associated with telomere short-
ening, N. furzeri closely resembles the situation in humans and allows fast identification of
pathologies caused by telomere attrition.

Lessons from the Genome
As in the case of genomic manipulation, in the genomic era the availability of a genome reference
sequence is usually considered a prerequisite for an organism to be broadly recognized as a new
model organism by the scientific community. Extensive efforts have been undertaken over the
past 10 years to reach this goal. Toward this end, the first insights were provided by cytogenetics
and genome survey Sanger sequencing [34]. The N. furzeri genome contains 19 chromosomes
(2n = 38) and was estimated to be �1.5 Gb in size and extremely repeat rich, particular in satellite
sequences. The shortest-lived strain (GRZ), collected in 1969 in the game reserve Gona Re Zhou
in Zimbabwe [35], proved to be highly inbred. Longer-lived strains, established only several years
ago, are genetically heterogeneous. Crosses of these strains provided the first genetic maps of
the N. furzeri genome [36] and lifespan-controlling quantitative trait loci (QTLs) [37], showing
that lifespan determination is polygenic. Both studies identified males as the heterogametic sex,
concordant with an XY sex-determining (SD) system.

Advances in sequencing technologies made it possible for two independent N. furzeri genome
assemblies to be constructed and published in parallel [8,9]. Different strategies led to consid-
erable differences in assembly metrics (Table 1). In the first study, to reach chromosome-scale
long-range contiguity, a five-step strategy was used comprising sequence assembly, scaffold/
gap filling, integration of optical and genetic linkage maps, and, finally, comparative synteny
mapping in two closely related fish species. The second study used RNA-seq and a high-density
restriction-site-associated DNA (RAD) linkage map to improve contiguity and to assign
sequence scaffolds to chromosome-scale linkage groups (Figure 3).
Table 1. Metrics of the Recently Published Nothobranchius furzeri Genome Assemblies

Metric Reichwald et al. Valenzano et al.

Scaffoldsa Synteny Groups Scaffoldsb Linkage Groups

Number 6012 19 42 796 19

Total bases (kb) 1 230 899 1 078 720 1 079 977 379 581

Largest unit (kb) 44 272 98 476 27 998 27 998

N50c (kb) 15 858 63 667 247 21 055

Nd (%) 30.4 33.6 7.7 7.8

Protein-coding genes 26 141 28 494

High confidence 20 299e 22 521f

aAfter optical mapping integration.
bAfter paired-end RNA-seq data and linkage map integration.
cN50, 50% of assembly is of equal or longer length.
dUnresolved nucleotide position; N stands for A, C, G, or T.
eSupported by at least two of the three methods for gene prediction (protein similarity, RNA-seq, in silico model).
fTiers 1 and 2.
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Figure 3. The Genome of Nothobranchius furzeri. (A) Composite male GRZ karyotype where synteny groups (sgrs) are assigned to chromosomes by hybridization
with up to three fluorescently labeled BAC probes per sgr [8]. Assignment was successful for 15 of 19 sgrs (tbd, to be done). The order of chromosomes given is based on
the assembled sequence length of respective sgrs, starting with the longest. Both sex chromosomes are shown (sgr05). (B) Stepwise assembly of the 19 sgrs of the
reference [8]: inner circle – scaffolds obtained by sequence assembly; second circle – super scaffolds built on integration of optical map; third circle – genetic scaffolds
generated by linkage map integration; outer circle – sgrs defined on analyses of synteny in medaka and stickleback. Center: Legend for sgr display. (C) High-density
restriction-site-associated DNA (RAD) map of 19 linkage groups comprising 5736 RAD markers [9].
Despite using very different approaches, the two studies identified genomic regions enriched in
aging-related genes. The first took advantage of the long-range contiguity of their N. furzeri
reference sequence and performed a genome-wide positional gene-enrichment (PGE)
analysis for differentially expressed genes (DEGs) in aging short- and long-lived N. furzeri
strains. In total, they detected seven PGE regions. One of these regions was detected based on
DEGs in skin aging, which is consistent with the well-accepted aging-related phenotype of
decreased regenerative capacity. The second study, by contrast, performed QTL mapping of
lifespan by crossing short- and long-lived stains. They identified one genome-wide significant
lifespan QTL, located on the sex chromosomes. This was consistent with earlier findings [37] that
were not able to resolve this region from the SD region. This region was found to be enriched for
known aging-related genes1. Based on the above information, the authors speculated that a
haplotype block containing a cluster of genes, rather than a single gene, might be involved in the
observed lifespan difference. Remarkably, the QTL enriched in aging-related genes identified by
Valenzano et al. is contained within two overlapping regions detected by the PGE analysis in the
first study. Taken together, these findings are in line with increasing data suggesting that
eukaryotic genes located in physical proximity may be coregulated and/or have similar functions.
In this context, it is noteworthy that 3D chromatin structure couples nuclear compartmentaliza-
tion of chromatin domains with the control of gene activity [38] and that cellular senescence is
associated with modifications of the global chromatin interaction network [39]. This may provide
a mechanistic link between nonrandom genomic distribution of genes related to aging and their
potential coregulation in the process of N. furzeri organismal aging.

Both studies also searched their protein-coding gene annotations for signs of positive selec-
tion – a common approach in genome analysis – to identify candidates for driving the species’
short lifespan. At first glance, the results of these analyses differ. While Valenzano et al. identified
1http://genomics.senescence.info/genes
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497 N. furzeri genes with at least one site under positive selection, Reichwald et al. found only
seven in N. furzeri and one in N. pienaari, a sympatric species showing convergent evolution of
very short lifespan [3]. A closer look at the respective analyses reveals the causes of the
discrepancy: the two studies focused on substitutions observed along phylogenetic branches
of very different lengths. By choosing platyfish as the closest related outgroup, Valenzano et al.
searched for sites of positive selection along an evolutionary branch of 50–70 million years [40]
(although annualism evolved along this branch only �20 million years ago [41]), while Reichwald
et al. used as an outgroup Aphyosemion, the nonannual sister genus of Nothobranchius, and
focused their analysis on the terminal branch of <1 million years leading to very short lifespan.
Respectively, most of the substitutions detected by the approach of Valenzano et al. predate
the evolution of annual life cycle (for more details see Sahm et al. in this issue). Interestingly, the
results of this follow-up study suggest convergent evolution toward very short lifespan among
Nothobranchius species.

Currently, the reference sequences of the N. furzeri genome are provided online by two dedicated
browsers (http://www.nothobranchius.info/NFINgb and http://africanturquoisekillifishbrowser.
org). Efforts are under way to integrate these resources and maintain an improved genome
assembly (e.g., by gap filling using long PacBio reads) at the established Ensembl and UCSC
genome browsers in the future.

Insights into N. furzeri Sex Determination
As often occurs in genome science, mining of a novel reference sequence guides research into
rather unexpected directions. The finding of a surprisingly large male-specific region of the Y
chromosome (MSY) in the inbred GRZ strain allowed the identification of an unprecedented
intraspecies Y chromosome polymorphism [8]. This polymorphism represents different stages of
sex chromosome evolution ‘in action’ that display features of early mammalian XY formation. To
date, intraspecies sex chromosome polymorphisms have been observed in only exceptional
cases and only by using cytogenetic methods (e.g., in the guppy [42]). Moreover, analysis of the
minimal MSY suggests that a TGF-b family growth factor, growth differentiation factor 6 (Gdf6), is
the master regulator in N. furzeri sex determination [8]. Although other members of the TGF-b
family and their receptors are important factors in vertebrate sexual development and function as
master sex determinants in several fish species [43], Gdf6 has not been described in the context
of gonad development so far, warranting further investigation. Comparative variation analyses of
the N. furzeri Y chromosome polymorphism indicate a three-step scenario for its evolution
(Figure 4). First, deletion of a miRNA-binding site in the emerging gdf6Y allele led to prolonged
gene expression in the developing male gonads. Second, a newly accumulating Y-specific 35-
kb tandem-repeat cluster prevented recombination in a 200-kb region. Third, inversions
encompassing larger regions (7–37 Mb) occurred independently in three strains as the second-
ary crossover barrier. Also, the sex chromosomes of the flatfish Cynoglossus semilaevis,
estimated to be �30 million years old, have most likely diverged due to recombination by a
large inversion [44]. In mammals, the XY evolution has shaped these chromosomes by four
consecutive inversions into evolutionary strata over 320 million years [45]. For N. furzeri it was
estimated that primary and secondary recombination suppression (the second/third steps of the
above scenario) occurred <1 million and 70 000–38 000 years ago [8]. Thus, these events are
very young in evolutionary terms compared with previously studied SD systems. The findings
indicate that during early sex chromosome evolution multiple Ys can emerge and subsequently
the most successful Y might make a sweep through the species. From both the evolutionary and
the population genetic viewpoint, it is of great interest whether the deep geographic structuring
[46], short lifespan, and/or other adaptations of N. furzeri facilitated the recent emergence of a
novel SD system and the intraspecies Y chromosome polymorphism. The intriguing possibility of
coevolution between sex chromosomes and lifespan is indicated by the recent finding that
the strongest lifespan QTL signal is closely linked but distinct from the SD region [9]. Moreover,
548 Trends in Genetics, September 2016, Vol. 32, No. 9
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Figure 4. Three-Step Hypothesis of Nothobranchius furzeri Sex Chromosome Evolution. First step: Emergence
of a proto-Y chromosome from a pair of autosomes by an expression- and/or function-changing mutation in one of the gdf6
autosomal alleles (white circles) resulting in a sex-determining gdf6Y allele (light orange; e.g., the observed deletion of a mir-
430-binding site) [8]. Second step: Primary/local recombination suppression by Y-specific repeat accumulation in close
vicinity to the sex-determining (SD) gene (e.g., the identified 35-kb tandem-repeat cluster) resulting in accretion of further
gdf6Y-specific variations (dark orange). Third step: Secondary crossover barrier by large inversion. Dotted rectangles,
region of suppressed recombination; shades of lighter gray, gradual accumulation of variations in the male-specific region of
the Y chromosome (MSY).
the extreme N. furzeri lifespan [1,3], the shortest among Nothobranchius spp., and its SD system
evolved in the same time frame [8].

Diapause and Aging: Is There a Connection?
One measure how N. furzeri survives in its ephemeral habitat is a state of developmental arrest
termed diapause. This arrest can occur at three distinct developmental stages and can last for
more than 1 year (Figure 1). It is interesting to note that in N. furzeri a connection has been
observed between the rate of embryonic development and post-hatching life-history traits [47].
In C. elegans, one of the classical models of aging research, a similar state of developmental
arrest termed dauer larvae, exists. This arrested form can be induced by crowding and limited
food supply. With daf-2 encoding the insulin/insulin-like growth factor 1 receptor, a gene has
been identified that regulates the formation of dauer larvae and leads to a dramatic lifespan
extension when mutated [48]. In addition, similar gene expression signatures have been
identified in dauer larvae as well as in daf-2-mutant adults [49]. This suggests the existence
of genes that are involved in regulation of the dauer larval state and lifespan. This has prompted
an examination of whether the N. furzeri genome also has gene signatures that are similar in
diapause and aging, and such common signatures could indeed be found. Genes that were
downregulated both in developmentally arrested embryos and on aging of the brain were
involved in cell-cycle regulation and chromosome segregation [8]. This was not unexpected,
since in diapause proliferation is halted. It had also been shown earlier that mitotic activity
declines in the aging N. furzeri brain [23]. Surprisingly, genes upregulated in diapause as well as
during N. furzeri brain and skin aging could almost exclusively be attributed to translational
Trends in Genetics, September 2016, Vol. 32, No. 9 549



Outstanding Questions
What are the genetic determinants of
the short lifespan of Nothobranchius
furzeri?

How far do gene expression patterns in
early life predict lifespan?

Did the short lifespan coevolve with
sex determination and did annualism,
deep geographic structuring, and/or
other adaptations of N. furzeri facilitate
the intraspecies Y chromosome
polymorphism?

Are there genes and pathways that
regulate both diapause and aging
and what are the signals that trigger
entering into diapause and exit from it?

Can N. furzeri be developed as a model
to perform high-throughput genetic,
pharmacological, and environmental
(e.g., microbiome) screens for aging
and lifespan?
elongation and ribosome biogenesis. While aging-related upregulation of genes encoding
components of the translational machinery has been reported for human tissues [50] and their
expression has been negatively correlated with individual lifespan in N. furzeri (see below), their
upregulation in N. furzeri diapause is unexpected. One explanation could be that embryos in
diapause prepare themselves to be able to immediately execute gene expression when
environmental conditions become favorable again. These data suggest that the study of
N. furzeri diapause can reveal genes and pathways that are associated with aging and lifespan
determination. Upregulation of genes encoding components of the translational machinery has
also been recently described in aging of the rat brain [51] as well as during replicative aging in
yeast [52]. While it is unclear whether this is a cause or consequence of the loss of proteostasis
during aging, the observation that ‘translational’ and ‘ribosomal’ genes are significantly activated
in older animals implies that loss of proteostasis, another hallmark of aging (see above), also
accompanies aging in N. furzeri.

Toward Predicting Lifespan
The short lifespan of N. furzeri together with the possibility of repeatedly taking samples from
the same tissue (blood, fin) presents a unique opportunity to perform longitudinal studies in a
vertebrate during manageable timeframes. Such studies can be employed to address the
questions of how far exogenous or endogenous conditions during early life influence aging
and lifespan and allow us to ask how much of lifespan is predictable. So far, similar studies
have been performed in C. elegans, where it was shown that the amount of heat-shock
proteins as well as of miRNA miR-71 is a predictor of lifespan [53,54]. In a first longitudinal
study, N. furzeri gene expression during early life (i.e., at 15% and 30% of maximum lifespan)
was analyzed and correlated with individual lifespan [20]. Two interesting results were
reported. First, the longest-lived animals showed the smallest differences in overall gene
expression between the two time points, suggesting that aging rate and lifespan are
influenced and can even be predicted by the magnitude of gene expression changes during
early adulthood. Second, the expression levels of several gene sets, including oxidative
phosphorylation and ribosome and other biosynthetic pathways, showed lower expression
levels early in the life of long-lived individuals. Network analysis identified nuclear genes
encoding complex I of the respiratory chain as a central hub in a module of genes whose
expression is negatively correlated with individual lifespan. It was shown that treatment of
both N. furzeri and zebrafish with rotenone, an inhibitor of complex I, had a rejuvenating
effect on the transcriptome; that is, it reverted gene expression signatures to those of
younger age. In addition, treatment with a low dose of rotenone led to extension of lifespan in
N. furzeri by 15%. These data are consistent with the extension of lifespan in C. elegans on
knockdown of genes related to mitochondrial activity [55] and suggest that early-life gene
expression patterns are critical predictors of lifespan.

Concluding Remarks and Future Perspectives
Several studies in the past decade have shown that, in many aspects, aging in N. furzeri
resembles mammalian aging. In addition, the existence of several natural strains with different
lifespans and the possibility of engineering the genome as well as the recent availability of its
genome sequence have helped N. furzeri become an accepted model for aging research. With
CRISPR/Cas9 technology N. furzeri should be an ideal model to explore – in short time – genes
and pathways that control aging in vertebrates, including humans. This will also include areas like
epigenetics, metabolism, and behavior as well as address the role of the microbiome in aging
(see Outstanding Questions). However, the genome also taught us that the killifish is more than a
model for aging research, but also allows insights into development, ecology, and evolutionary
biology. Eventually, N. furzeri could also serve as a platform to perform high-throughput genetic
and pharmacological screens for genes and substances affecting aging and longevity as well as
aging-associated diseases.
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