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A Microinjection Protocol for the Generation of
Transgenic Killifish (Species: Nothobranchius
furzeri)
Nils Hartmann* and Christoph Englert

Background: A challenge in age research is the absence of short-lived vertebrate model organisms. The
turquoise killifish Nothobranchius furzeri has an exceptionally short lifespan of 4–10 months depending
on the strain. Thus, it possesses the shortest known maximum lifespan of a vertebrate species that can be
bred in captivity. Results: Here we show the successful introduction of DNA and RNA molecules into the
one-cell embryo of N. furzeri. For this purpose, we adapted existing microinjection protocols to inject
through the remarkably thick and robust chorion of N. furzeri’s eggs. The injected DNA transgene was
integrated into the genome and transmitted to subsequent generations as indicated by the expression of
the fluorophore enhanced green fluorescent protein (EGFP). Furthermore, we could confirm a special
phase during embryonic development in which embryogenesis occurs within a re-aggregated mass of pre-
viously dispersed cells as it has been described for other related cyprinodont fish species. Conclusions:
The transgenesis protocol described here provides a basis for a variety of genetic manipulations includ-
ing overexpression of genes and determining their effects on lifespan and longevity. The feasibility to per-
form transgenesis is an important step to establish N. furzeri as a new model in age research.
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Key findings:
� A transgenesis protocol is presented for the short-lived fish Nothobranchius furzeri.
� Successful germline transmission of the trangene is shown.
� N. furzeri possesses unique phases of embryonic development.
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INTRODUCTION

Small laboratory fish such as zebrafish

(Danio rerio) or medaka (Oryzias lat-

ipes) are very popular as vertebrate

models in developmental biology and

genetics, because they can be main-

tained in large numbers at relatively

low costs. In the past years, particularly

zebrafish has been used as a model

for various human diseases ranging

from cancer (Etchin et al., 2011) to

neurodegenerative diseases (Paquet
et al., 2010; Linder et al., 2011). Of in-
terest, zebrafish has also turned out to
be an excellent model for regeneration
(Jopling et al., 2010; Kikuchi et al.,
2010; Diep et al., 2011). It would be de-
sirable to use these species in aging and
longevity studies, however, their maxi-
mum lifespan of up to five years
(Egami, 1971; Gerhard et al., 2002) pre-
vents them from being used as a routine
model in age research.

The turquoise killifish (Nothobran-
chius furzeri) is a small laboratory
fish that has the shortest known max-
imum lifespan of a vertebrate species
which can be kept in captivity (Valde-
salici and Cellerino, 2003). Depending
on the strain, maximum lifespan
ranges from 4 to 10 months, which
makes N. furzeri an ideal model for
aging studies (Terzibasi et al., 2008).
The short lifespan is considered to be
the consequence of its natural habitat
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characterized by alternating rainy
and dry seasons.

The fish live in temporary bodies of
fresh water located in South-Eastern
Africa and are absent in permanent
streams or ponds. The population sur-
vives the dry season in the form of
embryos encased in the mud. During
the subsequent rainy season, the
embryos hatch and the larvae rapidly
grow to maturity. Sexual reproduction
occurs as early as 4–5 weeks after
hatching. Survival of the population in
the embryo form has been correlated
with unique developmental character-
istics (Peters, 1963). Embryos can
enter a facultative developmental
arrest or diapause at three distinct
stages of development, which allow
them to survive the variable durations
of the dry seasons. Little is known
about the mechanisms that trigger the
onset and duration of each diapause,
except that in Nothobranchius guen-
theri low temperature and low oxygen
concentration increase the proportion
of embryos entering diapauses (Peters,
1963; Markofsky andMatias, 1977).

Another characteristic of N. furzeri
is that the short lifespan has been
associated with rapid aging as shown
by an early onset of aging biomarkers,
a decline in learning and behavioral
capabilities, age-related telomere
shortening and an age-related impair-
ment of mitochondrial function (Terzi-
basi et al., 2008; Hartmann et al.,
2009, 2011). Further genetic studies in
N. furzeri will benefit from completion
of the genome and transcriptome pro-
ject, which are under way (Reichwald
et al., 2009; Valenzano et al., 2009). A
very important aspect in establishing
N. furzeri as a model organism in age
research is the feasibility to manipu-
late gene expression and gene function
by insertion of foreign DNA into the
genome and its transmission to subse-
quent generations.

Several different approaches includ-
ing electroporation and particle bom-
bardment have been tested for germ-
line transgenesis in fish, but up to now
microinjection has been shown to be
the method of choice (Rembold et al.,
2006). This approach requires the
injection of DNA constructs directly
into the embryo at the one-cell stage.
To facilitate early integration of for-
eign DNA into the host genome, one
technique involves the co-injection of

meganuclease I-Sce, whereas other
approaches use different transposon
systems (Grabher and Wittbrodt,
2007). Recently, the Tol2 transposon
system, originally isolated from the
medaka fish, has been successfully
used in zebrafish and other verte-
brates (Kawakami, 2007; Mosimann
and Zon, 2011). Tol2 belongs to the
hAT (hobo/Activator/Tam3) transpos-
able element family, which is flanked
by inverted repeats and encodes their
own transposase (Koga et al., 2002).

Here we used the Tol2 system to an-
alyze the feasibility of injecting DNA
molecules into N. furzeri embryos and
generating transgenic animals. We
describe optimized injection condi-
tions and show that the introduced
transgene is integrated into the germ-
line and transmitted to the F2
generation.

RESULTS AND DISCUSSION

Establishing Microinjection

Conditions for N. furzeri

To establish transgenesis in N. fur-
zeri, we tested several conditions how
to optimally inject RNA or DNA mole-
cules into the one-cell embryo. One
factor influencing the microinjection
procedure is the thickness of the outer
envelope, or chorion, of the fish egg.
Whereas zebrafish embryos have a
rather thin chorion and are hence rel-
atively easy to inject, other fish spe-
cies such as medaka or stickleback
have a thicker and more robust cho-
rion. Because N. furzeri embryos sur-
vive in a dry environment, their cho-
rion is exceptionally thick and robust
(Fig. 1A). First experiments to remove
the chorion manually with forceps or
enzymatically with pronase or trypsin
were not successful. Instead, we gen-
erated glass needles that were stable
enough to penetrate through the cho-
rion and thin enough to allow injec-
tions into the cytoplasm of the blasto-
disc (one-cell stage; Fig. 1A). Another
step that improved the microinjection
procedure (Fig. 1C–E) was the fixa-
tion of the embryos while injecting.
Although microinjection was possible
when holding embryos in agarose
trenches as described for other fish
species (Rembold et al., 2006), we
experienced a higher efficiency and
survival rate when the complete

embryo was fixed in 1% low melting
agarose (Fig. 1B). The injected
embryos were removed from the aga-
rose the next day and cultivated in
0.3� Danieau’s medium. There was
no detectable difference in survival
rate of agarose-embedded and nonem-
bedded embryos.

Injection of EGFP-mRNA

Visualizes Developmental

Stages of N. furzeri

To monitor embryonic development
we injected EGFP-mRNA (60 ng/ml;
EGFP, enhanced green fluorescent
protein) into the blastodisc of N. fur-
zeri embryos. This one-cell stage
occurred at approximately 2 hr post
fertilization (hpf) and was clearly visi-
ble (Fig. 1A). Expression of EGFP was
first observed after 12 hpf at the 16-
to 32-cell stage (Fig. 2A), and cleavage
during the first day after fertilization
produced a typical teleost blastula
(Fig. 2B; Iwamatsu, 2004). The gas-
trula stage began at day 2 with the
expansion of the blastoderm over the
surface of the yolk sphere (Fig. 2C)
and epiboly was completed at day 3
(Fig. 2D). Blastomeres dispersed dur-
ing epiboly and appeared to be
arranged in a striking pattern of
near-uniform distribution (Supp. Fig.
S1A, which is available online). It has
been shown in Nothobranchius spe-
cies and other closely related cyprino-
dont fishes that there is no embryonic
shield or axial organization during
the dispersed phase (Fig. 2D;
Wourms, 1972; van Haarlem, 1983;
Carter and Wourms, 1991). This is in
contrast to other teleost fishes, such
as Fundulus heteroclitus (Betchaku
and Trinkaus, 1978), Oryzias latipes
(Iwamatsu, 2004), and Danio rerio
(Kimmel et al., 1995) in which blasto-
meres aggregate before and during
epiboly to form the germ ring and em-
bryonic shield. Embryogenesis in
these fishes takes place in the shield
and is usually well advanced before
the completion of epiboly.
In N. furzeri, the stage of complete

dispersion lasted for several days and
embryos might enter the first develop-
mental arrest in this phase (dia-
pauses I). A localized region of high
cell density usually appeared at
around day 6 and marked the future
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site of re-aggregation (Fig. 2E, Supp.
Fig. S1B). During the following day
the aggregate increased in area and
cell number until the embryonic axis
appeared which is marked by linear
ordering of cells within the aggregate.
The aggregate was further increasing
and resulted in the pre-somite embryo
that usually appeared at day 8 (Supp.
Fig. S1C). There was some variation
when the somite stage became visible
among N. furzeri embryos, despite
embryos were always kept in 0.3�
Danieau’s medium at 23�C (Supp.
Fig. S1D). For instance, half of the
embryos entered the 12-somite stage
at day 9 (8 of 16 analyzed embryos),
but the overall range varied from day
8 to 11.

The somite phase lasted for several
days (here from day 10 to day 24) and

diapause II might occur at this stage.
Surprisingly, EGFP expression was
still detectable at day 10 and 17 which
is most likely due to the high stability
of the EGFP protein. It is worth not-
ing that the N. furzeri somite stage at
17 days post fertilization (dpf; Fig.
2G) roughly corresponds to the zebra-
fish somite stage at 20 hpf in which
EGFP expression from injected
mRNA can be easily detected. Orga-
nogenesis occurred before day 31 (Fig.
2I) and growth proceeded until day 36
(Fig. 2J). This is the prehatching state
and diapause III might occur at this
stage. Overall, this description of em-
bryonic stages in N. furzeri is in ac-
cordance with studies based on other
Nothobranchius species and on other
annual fish species such as Austrofun-
dulus myersi and Cynolebias spec.

(Wourms, 1972; van Haarlem, 1983;
Carter and Wourms, 1991).

Generation of Transgenic

N. furzeri

We constructed a Tol2 vector carrying
the enhanced green fluorescent pro-
tein (EGFP) expression cassette
flanked by Tol2 elements (Fig. 3A).
The vector additionally contained the
SV40 late polyadenylation (polyA) sig-
nal sequence and a 5.3 kb promoter
element from the zebrafish b-actin2
gene (Kwan et al., 2007). This pro-
moter element has been shown to
drive broad expression throughout
the zebrafish embryo (Higashijima
et al., 1997). We co-injected the DNA
construct (25 ng/ml) with the Tol2
transposase mRNA (25 ng/ml) directly
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Fig. 1. Microinjection procedure in N. furzeri. A: Fertilized eggs are allowed to develop for 2 hr. During this time, the blastodisc or one-cell stage
develops. B: Embryos at the one-cell stage are embedded in 1% low melting agarose for fixation and are oriented with the blastodisc facing the
injection needle. Glass needles for zebrafish have a longer and thinner tip, whereas needles for N. furzeri have a shorter and more robust tip to
penetrate through the hard chorion of the eggs (inset). C–E: Correct microinjection into the cytoplasm of the blastodisc is visualized by injecting a
solution containing phenol red dye. Scale bar ¼ 1 mm. b, blastodisc; c, chorion, ld: lipid droplets, ps: perivitelline space, sp: surface projections
of the chorion, y: yolk, ycl: yolk cytoplasmic layer (adapted from Carter and Wourms, 1991).
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Fig. 2. Embryonic development of N. furzeri. EGFP-mRNA was injected into the cytoplasm of the blastodisc and EGFP expression was moni-
tored while the embryo was cultivated in 0.3� Danieau’s medium at 22–23�C. Embryos are always shown using fluorescence (left) and phase con-
trast (right) optics. A,A0: 16- to 32-cell stage, B,B0: Blastula stage, C,C0:Early epiboly, D,D0: Completion of epiboly and dispersed phase (dispause I
may occur at this stage), E,E0: Beginning of re-aggregation, F,F0: Early somite embryo, G,G0:Mid somite stage (dispause II may occur at this stage),
H,H0: Late somite embryo, I,I0: Organogenesis is nearly completed, J,J0: Prehatching (dispause III may occur at this stage); hpf, hours post fertiliza-
tion; dpf, days post fertilization. Embryonic staging has been adapted from Wourms, 1972. EGFP, enhanced green fluorescent protein.



into the blastodisc of N. furzeri at the
one-cell stage. We screened for EGFP
expression 24 hr after injection and
from 350 injected embryos we found
70 (20%) surviving embryos express-
ing EGFP (Fig. 3B). Embryos were
cultivated in 0.3� Danieau’s medium
for 1 week until they reached the
somite stage and were then kept on
peat moss until hatching. As in the
un-injected embryos, a considerable
amount of embryos underwent
extended diapauses or died during de-
velopment. From seven hatched
embryos, four larvae reached sexual
maturity (5 weeks after hatching).
Analysis of EGFP expression revealed
that all four larvae showed a mosaic
expression pattern of EGFP as it has
been frequently described for the
founder generation of transgenic ani-
mals (Fig. 3C,D; Winkler et al., 1991;
Hosemann et al., 2004; Cho et al.,
2011). EGFP expression continued
throughout adulthood as determined
at the age of 7 months (not shown).
This is in agreement with recent stud-
ies in zebrafish and medaka showing
EGFP expression under the control of
different b-actin promoters to be
active in numerous tissues of adult
fish (Burket et al., 2008; Cho et al.,
2011). In this particular experiment
we obtained four potential founders
from 350 injected oocytes indicating a
very low efficiency of around 1%.
However, it has to be considered that
only 10% of the routinely collected
embryos survive and reach sexual
maturity. The rest of the embryos
does not survive the various phases of
development. Thus, by further
improving husbandry conditions we
would also significantly improve effi-
ciency of transgenesis.

Germline Transmission

To analyze whether the injected
transgene was transmitted to the
next generation, all four founder fish
expressing EGFP were mated with
wild-type fish of the same strain. One
out of four founder fish, a female,
transmitted the transgene to its off-
spring as observed by EGFP expres-
sion in the F1 embryos (Fig. 4). This
F0 female transmitted the transgene
at a high frequency of 70.2% (33 of 47
embryos), suggesting more than one
independent integration site. The

EGFP expression was strong and
could be observed as early as at the
one-cell stage (�2 hpf), suggesting
maternal deposition of EGFP protein
and/or mRNA (Fig. 4A; Burket et al.,
2008). In all analyzed F1 embryos,
EGFP expression continued to be
strong during embryonic development
(Fig. 4).

To characterize the integration of
the transgene we performed Southern
blotting with genomic DNA of four
transgenic F1 animals. We restricted
genomic DNAwith either SacI or Hin-
dIII and used the EGFP gene as a
probe (Fig. 5A). Two animals showed
one band, suggesting one integration
site per animal, whereas the other
two animals showed two bands indi-
cating two integration sites. The num-
ber of bands per animal was consist-
ent with SacI or HindIII restriction.
In total, we detected four bands that
differed in size, suggesting four differ-
ent integration sites in these analyzed
F1 animals. Thus, we assume that
integration of the transgene occurred
at least four times in the founder fish.
We also performed an inverse poly-
merase chain reaction (PCR)
approach and restricted genomic DNA
of transgenic animals with several
restriction enzymes that cut outside
the transgene. After ligation of the
fragments to form circular molecules
we performed a long-range PCR. In
case of the restriction of genomic DNA
with MscI and SpeI, we obtained two
PCR products that included the bor-
der between transgene and host DNA
(Fig. 5B). Sequence analysis of these
integrations sites revealed that eight
nucleotides of host DNA had been
duplicated as it is typical for the inte-
gration mechanism of the tol2 trans-
posase (Koga et al., 2002; Kondrychyn
et al., 2009). This demonstrates that
transgene integration was indeed
mediated by the transposase and not
by other means of recombination.

To avoid any maternal effects we
crossed one male of the F1 progeny
animals to non-transgenic females.
The resulting F2 embryos only
expressed EGFP as early as at the
blastula stage (24 hpf) as expected
when the transgene is transmitted
paternally. Fluorescence intensity of
the F2 embryos was lower compared
with the F1 embryos (Fig. 6). The
transmitted frequency was 48.1% (25

of 52 embryos), which is close to the
expected Mendelian ratio of 50% indi-
cating the transmission of the trans-
gene that had integrated into one
locus.
The feasibility to manipulate gene

expression is a prerequisite to estab-
lish N. furzeri as a new model orga-
nism for age research. While this
manuscript has been prepared, a suc-
cessful transgenesis protocol for
Nothobranchius furzeri has also been
presented by others (Valenzano et al.,
2011). The authors also used the tol2
transposon system with slight varia-
tions compared with our injection pro-
tocol. The ability to perform transgene-
sis will be useful for introducing a
variety of molecules including morpho-
linos, RNAs or DNA transgenes into
N. furzeri. This should be particularly
useful when overexpressing candidate
genes and determining their effect on
longevity and lifespan. Together with
the analysis of genome-wide linkage
mapping of the chromosome regions
that effect lifespan, this method should
also help to identify new genes
involved in the aging process.

EXPERIMENTAL

PROCEDURES

Fish Husbandry

The Nothobranchius furzeri strain
MZCS-08/122 originates from Southern
Mozambique (Dorn et al., 2011) and
was used for all experiments described
herein. Fish were kept at 266 1�C on a
12 hr: 12 hr light: dark cycle. Adult fish
were fed with red bloodworms (Chiro-
nomidae) once a day, while fry until the
age of five weeks was fed with brine
shrimp (Artemia) twice a day. Animals
were either kept in 40-liter breeding
tanks consisting of one male and sev-
eral females or individually, that means
two separated fish per 5-L tank. All
animals were maintained in accord-
ance with the current version of the
German Law on the Protection of
Animals.

Construction of Vector and

mRNA Preparation

The MultiSite Gateway system
(Invitrogen) and vectors from the Tol2
kit were used to generate the pDest-
Tol2A_bactin2:EGFP vector (#1091).
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This vector was created by combining
the Tol2 kit vectors #299 (p5E-bac-
tin2), #383 (pME-EGFP), #302 (p3E-
polyA), and #394 (pDestTol2pA2)
using LR Clonase II Plus (Invitrogen)
according to standard protocols.
Transposase mRNA was generated
using the Tol2kit vector #396
(pCS2FA-transposase) as a template.
The plasmid was linearized with NotI
(Roche) and capped mRNA synthesis
was carried out using the mMessage
mMachine SP6 kit (Ambion). RNA
was purified using phenol:chloroform
extraction and isopropanol precipita-
tion. The EGFP-mRNA was gener-
ated in the same way using the
pCSII vecotor #300 as a template
(kindly provided by Jochen Witt-
brodt) and using Asp718 (Roche) for
linearization.

Injections

Five to 10 breeding tanks were
equipped with sand boxes that were
subsequently checked for newly laid
eggs. Embryos with a clearly visible
blastodisc were chosen for embedding
in 1% low melting agarose (Biozym).
Embryos were lined up, so that the
blastodisc was facing toward the injec-
tion needle. After hardening of the
agarose the embryos were fixed and
the tip of the needle could penetrate

through the chorion directly into the
blastodisc. This was carried out with
glass capillary needles using a pres-

sure injector (World Precision Instru-
ments), micromanipulator (Saur) and
stereomicroscope (Olympus). The
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Fig. 4.

Fig. 3.
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injection solution contained either the
DNA-construct (25 ng/ml) and the
transposase mRNA (25 ng/ml) in 1�
Yamamoto’s medium or the EGFP-
mRNA (60 ng/ml) in 1� Yamamoto’s
medium.

Monitoring and Upbringing

of Transgenic Animals

Embryos injected with EGFP-mRNA
were cultivated in 0.3� Danieau’s me-
dium at 22–23�C. Pictures were taken
with a Zeiss Discovery V8 stereomi-
croscope. Embryos injected with the
DNA-construct and expressing EGFP
were first cultivated in 0.3� Dan-
ieau’s medium for one week and then
kept on peat moss for 2 to 3 weeks
until embryos were ready to hatch.
After hatching, fish reached sexual
maturity within 5 weeks and were
crossed to wild-type fish. EGFP-posi-
tive F1 embryos were raised to adult-
hood and crossed to wild-type fish to
establish a transgenic line.

Southern Blotting and

Inverse PCR

Genomic DNA was extracted from
entire F1 hatchlings (�10 days old)
using the QIAamp tissue kit (Qiagen,
Hilden, Germany). Approximately 15
mg of genomic DNAwas digested with
either HindIII or SacI (NEB, Frank-
furt, Germany) at 37�C overnight.
DNA samples were ethanol precipi-
tated and 10 mg of DNA were loaded
on a 0.7% agarose gel (1 � TBE). The
gel was treated for 10 min with 0.25
M HCl for depurination, then for 20
min with denaturing buffer (1.5 M
NaCl, 0.4 M NaOH) and finally for 20
min with renaturing buffer (1.5 M
NaCl, 0.1 M Tris-HCl [pH 7.5]). DNA
was blotted onto a Hybond XL mem-
brane (GE Healthcare, Munich,

Germany) by capillary transfer over-
night and cross linked. A PCR prod-
uct (625 bp) that included part of the

EGFP gene was radioactively labeled
with [a-32P]-dCTP using the NEBlot
kit (NEB, Frankfurt, Germany) and
subsequently purified using Probe-
Quant G-50 columns (GE Healthcare,
Munich, Germany). Hybridization
was performed in 10 ml Rapid-hyb
buffer (GE Healthcare) with a probe
concentration of about 1,000,000 cpm/
ml at 65�C for 3 hr. Stringency wash-
ing was performed once in 3� stand-
ard saline citrate (SSC)/0.1% sodium
dodecyl sulfate (SDS) and twice in
0.5� SSC/0.1% SDS at 65�C. Signal
analysis was performed using a
PhosphoImager FLA-7000 (Fujifilm,
Düsseldorf, Germany).
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Fig. 3. Generation of transgenic N. furzeri. A: Schematic of the injected DNA construct contain-
ing EGFP, polyA site and the zebrafish b-actin2 promotor flanked by two inverted tol2 sites. The
HindIII and SacI restriction sites were used for subsequent analysis of the integration by Southern
Blot, whereas the primers were used for the inverse polymerase chain reaction (PCR) approach.
The DNA construct was co-injected with the transposase mRNA to facilitate integration into the
genome. B,B0: Successful injection can be observed by EGFP expression after 24 hr. C,D: Young
fish that hatched from injected eggs (14 days after hatching) show a mosaic expression pattern
that is typical for the F0 generation. EGFP, enhanced green fluorescent protein.

Fig. 4. Developmental time course of EGFP expression in transgenic F1 embryos. The same
embryo is always shown using fluorescence (left) and phase contrast (right) optics. A–E: Ubiqui-
tous and strong EGFP expression was present throughout embryonic development and (F)
remained present after hatching in the F1 generation. EGFP, enhanced green fluorescent protein.

Fig. 5. Characterization of tol2 integration sites. A: Southern blot analysis of genomic DNA
from four transgenic F1 animals, which were either restricted with SacI or HindIII. Positions of
the restriction enzymes in the transgene and position of the used probe are shown in Fig. 3A.
Animal #1 and #2 display one band indicating the presence of only one integration site, whereas
animal #3 and #4 show two bands indicating two integrations. The total number of bands that
differ in size adds up to four (arrows) with both restriction enzymes, respectively. B: The inverse
polymerase chain reaction (PCR) approach revealed two PCR products that include genomic
host DNA (capital letters) and transgene DNA (lower case). The terminal inverted repeats of tol2
consist of 17 and 19 nucleotides and are marked in italic. The inverted repeats are flanked by
eight-nucleotide target site duplications of host DNA (bold) as it has been described for the tol2
integration mechanism. M, marker.
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For the inverse PCR approach, ali-
quots of 3 mg of genomic DNA of F1 ani-
mals were digested with 1 of 12 differ-
ent restriction enzymes that do not cut
within the transgene. A total of 500 ng
of restricted DNA was ligated with the
T4 DNA ligase (Fermentas, St. Leon-
Rot, Germany) in a 100-ml volume at
12�C overnight. The 100 ng of ligated
DNA was used as template for a long-
range PCR using the inverse primers
indicated in Figure 3A (for: TGGGCAT
CAGCGCAATTCAA; rev: TTGAGTAG
CGTGTACTGGCATT) and the
expanded long template PCR system
(Roche Applied Science, Mannheim,
Germany). PCR products were cloned
and sequenced.
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protein.
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